9,745 research outputs found

    Parametric Instability in Long Optical Cavities and Suppression by Dynamic Transverse Mode Frequency Modulation

    Get PDF
    Three mode parametric instability has been predicted in Advanced gravitational wave detectors. Here we present the first observation of this phenomenon in a large scale suspended optical cavity designed to be comparable to those of advanced gravitational wave detectors. Our results show that previous modelling assumptions that transverse optical modes are stable in frequency except for frequency drifts on a thermal deformation time scale is unlikely to be valid for suspended mass optical cavities. We demonstrate that mirror figure errors cause a dependence of transverse mode offset frequency on spot position. Combined with low frequency residual motion of suspended mirrors, this leads to transverse mode frequency modulation which suppresses the effective parametric gain. We show that this gain suppression mechanism can be enhanced by laser spot dithering or fast thermal modulation. Using Advanced LIGO test mass data and thermal modelling we show that gain suppression factors of 10-20 could be achieved for individual modes, sufficient to greatly ameliorate the parametric instability problem

    Numerical calculations of diffraction losses in advanced interferometric gravitational wave detectors

    Get PDF
    Knowledge of the diffraction losses in higher-order modes of large optical cavities is essential for predicting three-mode parametric photon-phonon scattering, which can lead to mechanical instabilities in long-baseline gravitational wave detectors. We explore different numerical methods in order to determine the diffraction losses of the higher-order optical modes. Diffraction losses not only affect the power buildup inside the cavity but also influence the shape and frequency of the mode, which ultimately affect the parametric instability gain. Results depend on both the optical mode shape (order) and the mirror diameter. We also present a physical interpretation of these results

    Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions

    Full text link
    We present a quantum analysis of three-mode optoacoustic parametric interactions in an optical cavity, in which two orthogonal transverse optical-cavity modes are coupled to one acoustic mode through radiation pressure. Due to the optimal frequency matching -- the frequency separation of two cavity modes is equal to the acoustic-mode frequency -- the carrier and sideband fields simultaneously resonate and coherently build up. This mechanism significantly enhances the optoacoustic couplings in the quantum regime. It allows exploration of quantum behavior of optoacoustic interactions in small-scale table-top experiments. We show explicitly that given an experimentally achievable parameter, three-mode scheme can realize quantum ground-state cooling of milligram scale mechanical oscillators and create robust stationary tripartite optoacoustic quantum entanglements.Comment: 20 pages, 5 figure
    • …
    corecore